Antecedentes y justificación:
Entre las principales fuentes de mercurio a la atmósfera se encuentran las industrias termoeléctricas que utilizan carbón para generar electricidad. Este metaloide es transportado vía atmosférica desde su origen hasta las zonas costeras adyacentes, donde pude ser depositado en los sedimentos
Planteamiento del problema y objetivos:
Esta investigación caracterizo el contenido y distribución temporal espacial de Hg en los sedimentos costeros de dos bahías en Chile Central, una zona industrializada como Bahía Coronel y Bahía Coliumo, como zona de referencia libre de industrias
Materiales y Métodos:
para ello se obtuvieron muestras superficiales y testigos de sedimentos desde las Bahías
Resultados y Discusión:
Los resultados muestran que los mayores contenidos de Hg se encontraron en los estratos superficiales del núcleo de Bahía Coronel, con concentraciones de hasta un orden de magnitud superiores a las obtenidas en los mismos estratos en Bahía Coliumo, en tanto que los sedimentos superficiales muestra que los mayores contenidos de Hg en la zona industrializada y más cercana a las termoeléctricas en Bahía Coronel.
Conclusiones:
Los aumentos registrados en la concentración de Hg coinciden con el inicio de la actividad industrial en la zona costera de Bahía Coronel, observándose mayores concentraciones a partir de 2012, año en que se inició la operación industrial de dos centrales termoeléctricas a carbón en la bahía. Asi también se pudo establecer relaciones entre el contenido de Hg y materia orgánica, que apoyarían que la principal vía de ingreso de Hg al sedimento es producto de la deposición atmosférica, mientras que en Bahía Coliumo los aportes de Hg registrados reflejan procesos locales naturales.
Agradecimientos:
Los autores agradecen a la Agencia Nacional de Investigación y Desarrollo del Gobierno de Chile ANID, Beca Nacional de Doctorado Nº 21171607 y Fondap 15130015 por financiamiento de la investigación.
Referencia:
Agarwalla Hridesh, Rabi Narayan Senapati, Tarit Baran Das, 2021. Mercury emissions and partitioning from Indian coal-fired power plants. Journal of Environmental Sciences. Volume 100, February 2021, Pages 28-33.Al-Haidarey M.J.S., F.M. Hassan, A.R.A. Al-Kubaisey, A.A.Z. Douabul, 2010. The geoaccumulation index of some heavy metals in Al-Hawizeh Marsh, Iraq. E-J. Chem., 7, pp. S157-S162, 10.1155/2010/839178Appleby P.G., 2001. Chronostratigraphic techniques in recent sediments. W.M. Last, J.P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments, Basin Analysis, Coring and Chronological Techniques, vol. 1, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 171-20.Appleby, P.G., Oldfield F., 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported Pb-210 to the sediment. Catena, vol. 5, 1-8.Aquino-López M.A., M. Blaauw, J.A. Christen, N.K. Sanderson, 2018. Bayesian analysis of 210Pb dating. J. Agric. Biol. Environ. Stat., 23 (3), pp. 317-333.Astorga-España, M. S., Calisto-Ulloa, N. C., & Guerrero, S., 2008. Baseline concentrations of trace metals in macroalgae from the Strait of Magellan, Chile. Bulletin of Environmental Contamination and Toxicology, 80(2), 97–101. http://doi.org/10.1007/s00128-007-9323-3.Bank M. S., 2012. Mercury in the Environment: Pattern and Process, 340. http://doi.org/10.1080/00207233.2012.704679Benoit Gaboury, 2018. Mercury in dated sediment cores from coastal ponds of St Thomas, USVI. Marine Pollution Bulletin, Vol. 126, Pages 535-539. https://doi.org/10.1016/j.marpolbul.2017.09.056Bieser, J., & Schrum, C., 2016. Impact of marine mercury cycling on coastal atmospheric mercury concentrations in the North- and Baltic Sea region. Elementa, 1–19. http://doi.org/10.12952/journal.elementa.000111Bowman K.L., C.R. Hammerschmidt, C.H. Lamborg, G.J. Swarr, A.M. Agather, 2016. Distribution of mercury species across a zonal section of the eastern tropical South Pacific Ocean (U.S. GEOTRACES GP16). Marine Chemistry 186 pp. 156-166. https://doi.org/10.1016/j.marchem.2016.09.005Buccolieri, A., G. Buccolieri, N. Cardellicchio, A. Dell Atti, A. Di Leo & A. Maci. 2006. Heavy metals in the marine sediments of Taranto Gulf (Ionian Sea, southern Italy). Mar. Chem., 99: 227-235.Canil Dante, Peter W. Crockford, Ricardo Rossin, Kevin Telme, 2015. Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the Earth. Chemical Geology. Volume 396, Pages 134-142. https://doi.org/10.1016/j.chemgeo.2014.12.029Caniupán M., T. Villaseñor, S. Pantoja, C. Lange, G. Vargas, P. Muñoz & M. Salamanca. 2009. Temporal changes in phytoplankton productivity over the last ∼200 years recorded from mejillones bay laminated sediments. Revista Chilena de Historia Natural 82: 83-96Cao Fei, Mei Meng, Bing Shan, Ruoyu Sun, 2021. Source apportionment of mercury in surface soils near the Wuda coal fire area in Inner Mongolia, China. Chemosphere, Volume 263, https://doi.org/10.1016/j.chemosphere.2020.128348Carrasco L., Benejam L., Benito J., Bayona J.M. and Diez S., 2011. Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir, Environment International, Volume 37, Issue 7, Pages 1213-1218, https://doi.org/10.1016/j.envint.2011.05.004.Carvalho F., J. M. Oliveira, A. M. M. Soares, 2011. Sediment accumulation and bioturbation rates in the deep Northeast Atlantic determined by radiometric techniques,
ICES Journal of Marine Science, Volume 68, Issue 3, Pages 427–435, https://doi.org/10.1093/icesjms/fsr005Cayuela L., 2014. Modelos Lineales Generalizados (GLM). Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos. Madrid, España.Chałupnik, S., Lebecka J.,1993. Determination of 226Ra, 228Ra and 224Ra in water and aqueous solutions by liquid scintillation counting, in Proceedings of Advances in Liquid Scintillation Spectrometry, 1993, Tucson, Arizona, USA. Chen B., L. Hub, h. Liu, Y. Bai, H. Z, B. Wu, J. Liua, Z. Guo, 2021. High-resolution depositional records of lead isotopes and polycyclic aromatic hydrocarbons in the Bohai Sea, China: Implications for a sediment footprint of anthropogenic impact. Volume 432, 106396. Marine Geology https://doi.org/10.1016/j.margeo.2020.106396Cui, R.Y., Hultman, N., Edwards, Morgan R. Edwards, Linlang He, Arijit Sen, Kavita Surana, Haewon McJeon, Gokul Iyer, Pralit Patel, Sha Yu, Ted Nace & Christine Shearer, 2019. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat Commun 10, 4759. https://doi.org/10.1038/s41467-019-12618-3De Gregori, I., Delgado, D., Pinochet, H., Gras, N., Muñoz, L., Bruhn, C., & Navarrete, G.,1994.Cadmium, lead, copper and mercury levels in fresh and canned bivalve mussels Tagelus dombeii (Navajuela) and Semelle sólida (Almeja) from the Chilean coast. Science of The Total Environment, 148(1), 1–10. http://doi.org/https://doi.org/10.1016/0048-9697(94)90367-0De Gregori, I., Delgado, D., Pinochet, H., Gras, N., Thieck, M., Muñoz, L., Navarrete, G., 1992. Toxic trace elements in Chilean seafoods: development of analytical quality control procedures. Science of The Total Environment, 111(2), 201–218. http://doi.org/https://doi.org/10.1016/0048-9697(92)90355-VDíaz O., Encina F., Chuecas L., Becerra J., Cabello J., Figueroa A, & Muñoz F., 2001. Influencia de variables estacionales, espaciales, biológicas y ambientales en la bioacumulación de mercurio total y metilmercurio en Tagelus dombeii. Revista de biología marina y oceanografía, 36(1), 15-29. https://dx.doi.org/10.4067/S0718-19572001000100003Díaz O., R. Frache, L. Chuecas & F. Encina, 1995. Concentración de mercurio total en residuos industriales líquidos y su impacto en el área marina costera de bahía San Vicente. Contribuciones Científicas y Tecnológicas, Área de Ciencias Básicas, 110: 21 - 33.Díaz-Jaramillo, M., Miglioranza, K. S. B., Carriquiriborde, P., Marino, D., Pegoraro, C. N., Valenzuela, G., & Barra, R., 2017. Sublethal effects in Perinereis gualpensis (Polychaeta: Nereididae) exposed to mercury-pyrene sediment mixture observed in a multipolluted estuary. Ecotoxicology, 26(6), 792–801. http://doi.org/10.1007/s10646-017-1810-7Díaz-Jaramillo, M., Muñoz, C., Rudolph, I., Servos, M., & Barra, R., 2013. Seasonal mercury concentrations and δ15N and δ13C values of benthic macroinvertebrates and sediments from a historically polluted estuary in south central Chile. Science of the Total Environment, 442, 198–206. http://doi.org/10.1016/j.scitotenv.2012.10.039Díaz-Jaramillo, M., Sandoval, N., Barra, R., Gillet, P., & Valdovinos, C., 2015. Spatio-temporal population and reproductive responses in Perinereis gualpensis (Polychaeta: Nereididae) from estuaries under different anthropogenic influences. Chemistry and Ecology, 31(4), 308–319. http://doi.org/10.1080/02757540.2015.1022535Długosz-Lisiecka Magdalena and Damian Perka, 2020. Modeling of 210Pb and 210Po radionuclide emissions from local power plants in central Poland. Environmental Science: Processes & Impacts. DOI: 10.1039/D0EM00141DDziok T., A. Strugala, A. Rozwadowski, i M. Macherzynsk, 2015. Studies of the correlation between mercury content and the content of various forms of sulfur in Polish hard coals. Fuel, 159, pp. 206-213. EPA Method 7473, 1998. Mercury in solids and solutions by thermal decomposition amalgamation and atomic absorption spectrophotometryFitzgerald, W.F., Engstrom, D.R., Hammerschmidt, C.R., Lamborg, C.H., Balcom, P.H., Lima-Braun, A.L., Bothner, M.H., Reddy, C.M., 2018. Global and Local Sources of Mercury Deposition in Coastal New England Reconstructed from a Multiproxy, High-Resolution, Estuarine Sediment Record. Environmental Science and Technology, Volume 52, Issue 14, 17 July 2018, Pages 7614-7620. https://doi.org/10.1021/acs.est.7b06122Flynn, W. W., 1968. The determination of low levels of polonium-210 in environmental materials. Analytica Chimica Acta. 43: 221-227.Gelen A., O. Díaz, M. J. Simón, E. Herrera, J. Soto, J. Gómez, C. Ródenas, J. Beltrán & M. Ramírez, 2003. 210Pb dating of sediments from Havana Bay. Journal of Radioanalytical and Nuclear Chemistry volume 256, pages561–564. https://doi.org/10.1023/A:1024572304648Godoy, J.M., Moreira, I., Bragança, M.J. Wanderley C. & Mendes L. B., 1998. A study of Guanabara Bay sedimentation rates. J Radioanal Nucl Chem 227, 157–160. https://doi.org/10.1007/BF02386450Goldberg E.D., 1963. Geocronology with 21°Pb in "Radioactive Dating". International Atomic Energy Agency Symposium Proceedings, Vienna 1962, 121 – 131.Hakanson L., 1981. A manual of lake morphometry. Berlin: SpringerVerlag.Harding G, Dalziel J, Vass P., 2018. Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine. PLOS ONE 13(7): e0197220. https://doi.org/10.1371/journal.pone.0197220Hidalgo M.A., 2017. Evaluación Temporal del Contenido de Metales Pesados en Sedimentos de la Bahía de Coronel, Chile. Tesis Biólogo Marino, Universidad de Concepción, Chile.Hirota J., Szyper J.P., 1975. Separation of total particulate carbon into inorganic and organic componentsHorowitz, H. M., Jacob, D. J., Amos, H. M., Streets, D. G., & Sunderland, E. M., 2014. Historical mercury releases from commercial products: Global environmental implications. Environmental Science and Technology, 48(17), 10242–10250. http://doi.org/10.1021/es501337jMas, E., Koshimura, S., Suppasri, A., Matsuoka, M., Matsuyama, M., Yoshii, T., Jimenez, C., Yamazaki, F., and Imamura, F., 2012. Developing Tsunami fragility curves using remote sensing and survey data of the 2010 Chilean Tsunami in Dichato, Nat. Hazards Earth Syst. Sci., 12, 2689–2697, https://doi.org/10.5194/nhess-12-2689Ingall E.D. & Van Cappellen P., 1990.Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta. 54, pp. 373-386Kamau J.N., 2002. Heavy Metal Distribution and Enrichment at Port-ReitzCreek, Mombasa. Western Indian Ocean J. Mar. Sci. Vol. 1, No. 1, pp. 65–70.Köhler M., Preuße W., Gleisberg B., Schäfera I., Heinrich T., Knobus B., 2002. Comparison of methods for the analysis of 226Ra in water simples. Applied Radiation and Isotopes, Volume 56, Issues 1–2, Pages 387-392. https://doi.org/10.1016/S0969-8043(01)00219-6Li Jinfeng, Chuangao Wang, Ziqiang Pan, Ziying Jiang, Ling Chen, Yanqi Zhang, Jingshun Pan, Chunhong Wang, Jingjing Li, Ruirui Liu, 2019. Analysis of 210Pb and 210Po emissions from coal-fired power plants, Fuel, Volume 236, Pages 278-283, https://doi.org/10.1016/j.fuel.2018.08.075Liang Xiaoxue, Chongguo Tian, Zheng Zong, Xiaoping Wang, Wanyanhan Jiang, Yingjun Chen, Jianmin Ma, Yongming Luo, Jun Li, Gan Zhang, 2018. Flux and source-sink relationship of heavy metals and arsenic in the Bohai Sea, China, Environmental Pollution, Volume 242, Part B, Pages 1353-1361, https://doi.org/10.1016/j.envpol.2018.08.011.Liu Liang, Juying Wang, Lijun Wang, Yingying Hu, Xindong Ma, 2019. Vertical distributions of mercury in marine sediment cores from central and southern part of Bohai Sea, China, Ecotoxicology and Environmental Safety Volume 170, Pages 399-406 https://doi.org/10.1016/j.ecoenv.2018.12.003.Lutter, R., & Irwin, E., 2002. Mercury in the environment: A volatile problem. Environment, 44(9), 24–40. http://doi.org/10.1080/00139157.2002.10543561Marín Andrés, Stefan Gelcich, Gonzalo Araya, Gonzalo Olea, Miguel Espíndola, Juan C. Castilla, 2010. The 2010 tsunami in Chile: Devastation and survival of coastal small-scale fishing communities, Marine Policy, Volume 34, Issue 6, Pages 1381-1384, https://doi.org/10.1016/j.marpol.2010.06.010.Mason R.P., Choi A.L., Fitzgerald W.F., Hammerschmidt C.R., Lamborg C.H., Soerensen A.L., Sunderlandb E.M., 2012. Mercury biogeochemical cycling in the ocean and policy implications. Volume 119, November 2012, Pages 101-117. Environmental Research, https://doi.org/10.1016/j.envres.2012.03.013Mathieu G.G., Lupton R.A., Hammond D.E., 1988. System for measurement of 222Rn at low levels in natural Waters. Health Phys., 55 (6), pp. 989-992Mazur Maxwell, Rachel Mintz, Monique Lapalme, Brian Wiens, 2009. Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada. Science of The Total Environment, Volume 408, Issue 2, 20 December 2009, Pages 373-381 https://doi.org/10.1016/j.scitotenv.2009.10.006Moreno F.N., Anderson C.W.N., R.B. Stewart, B.H., Robinson, 2005. Mercury volatilisation and phytoextraction from base-metal mine tailings. Environmental Pollution, Volume 136, Issue 2, July 2005, Pages 341-352. https://doi.org/10.1016/j.envpol.2004.11.020Müller, G. 1979. Schwermetalle in den sedimenten des Rheins-Veränderungen seit. Umschau, 79: 778-783.Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J., 2010. Generalized Linear Models: with Applications in Engineering and the Sciences (2da Ed.) New Jersey, USA: Wiley.Natasha, Muhammad Shahid, Sana Khalid, Irshad Bibi, Jochen Bundschuh, Nabeel Khan Niazi, Camille Duma., 2020. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of The Total Environment, Volume 711, https://doi.org/10.1016/j.scitotenv.2019.134749Nelson, P. F., Morrison, A. L., Malfroy, H. J., Cope, M., Lee, S., Hibberd, M. L., McGregor, J. 2012. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources. Atmospheric Environment, 62, 291–302. http://doi.org/10.1016/j.atmosenv.2012.07.067Nuñez M., 2012. Estimación de la variabilidad del aporte antropogénico histórico de Hg en la Bahía de Concepción, Chile. Tesis Biólogo Marino, Universidad de Concepción, Chile.Ozden B., Erkan Guler, Taavi Vaasma, Maria Horvath, Madis Kiisk, Tibor Kovacs, 2018. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. Volume 188, Pages 100-107 Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2017.09.016Pilson MEQ., 2013. An introduction to the chemistry of the sea, 2nd edn.Cambridge University Press, CambridgePirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., … Telmer, K., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951–5964. http://doi.org/10.5194/acp-10-5951-2010PNUMA (Programa de las Naciones Unidas para el Medio Ambiente), 2014. El Convenio de Minamata sobre el Mercurio y su implementación en la región de América Latina y el Caribe. Centro Coordinador Convenio Basilea-Centro Regional Convenio de Estocolmo para América Latina y el Caribe (CCCB/CRCE), ubicado en Montevideo, Uruguay, en el marco de un acuerdo con el Programa de las Naciones Unidas para el Medio Ambiente / Oficina Regional para América Latina y el Caribe (PNUMA/ORPALC).Pudasainee D., Jeong-Hun K., Yong-Chil S., 2009. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. Atmospheric Environment, Volume 43, Issue 39, Pages 6254-6259, https://doi.org/10.1016/j.atmosenv.2009.06.007.Qureshi, A., MacLeod, M., & Hungerbühler, K., 2011. Quantifying uncertainties in the global mass balance of mercury. Global Biogeochemical Cycles, 25(4). http://doi.org/10.1029/2011GB004068RETC (El Registro de Emisiones y Transferencias de Contaminantes), 2019. Registro de las Emisiones Fuentes Puntuales 2016-2018 y Emisiones Fuentes difusas 2016-2017, Comuna de Coronel, Chile. Ministerio Medio Ambiente Gobierno de Chile. https://datosretc.mma.gob.cl/dataset/emisiones-al-aireRomano E., L. Bergamin, I.W. Croudace, G. Pierfranceschi, G. Sesta, A. Ausili, 2020. Measuring anthropogenic impacts on an industrialised coastal marine area using chemical and textural signatures in sediments: A case study of Augusta Harbour (Sicily, Italy). Science of the Total Environment, Volume 755, Part 1, 10 February 2021, 142683. https://doi.org/10.1016/j.scitotenv.2020.142683Sahu, S.K., R.C. Bhangare, M. Tiwari, P.Y. Ajmal, G.G. Pandit, 2019. Depth profiles of lithogenic and anthropogenic mercury in the sediments from Thane Creek, Mumbai, India. International Journal of Sediment Research, Volume 29, Issue 3, Pages 431-439. https://doi.org/10.1016/S1001-6279(14)60057-3Salamanca, M. & A. Camaño. 1994. Historia de la contaminación por metales en traza en dos áreas costeras del norte y centro-sur de Chile. Gayana Oceanológica 2: 31-48pp.Salamanca, M. 1993. Sources and Skins of Pb210 to Concepción Bay. Chile. Ph. D. Dissertation, Marine Science Research Center. State University of New York. 85pp.Salonen L. & Hukkanen H., 1997. Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring 222Rn, uranium and 226Ra in groundwater samples. J Radioanal Nucl Chem 226(1–2):67–74.Schiff KC, Weisberg SB., 1999. Iron as a reference for determining trace metal enrichment in Southern California coastal shelf sediments. Mar. Environ. Res. 48: 161-176.Sethy N.K., V.N. Jha, P.M. Ravi, R.M. Tripathi, 2014. A simple method for calibration of Lucas scintillation cell counting system for measurement of 226Ra and 222Rn. Journal of Radiation Research and Applied Sciences Volume 7, Issue 4, Pages 472-477 https://doi.org/10.1016/j.jrras.2014.08.002Sosa-Echeverría R., Bravo Alvarez H., Fuentes García G., Rosas de Alva S., Granados Hernández E. & Sánchez Alvarez P., 2017. Estimación de emisiones de mercurio en las plantas carboeléctricas de México. Revista Internacional de Contaminación Ambiental, 33(2), 325–336. http://doi.org/10.20937/RICA.2017.33.02.13Standart Method, 2005. 4500-H+. B. Electrometric Method. H+ pH Value. 21° Edición. SM - APHA/AWWA/WEF.Tangahu B., Sheikh Abdullah S., Basri H., Idris M., Anuar N., Mukhlisin M., 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. DOI: 10.1155/2011/939161Tomlinson, D.L., Wilson, J.G., Harris, C.R. et al., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33, 566–575. https://doi.org/10.1007/BF02414780Turner A, Millward GE., 2000. Particle dynamics and trace metal reactivity in estuarine plumes. Estuar Coast Shelf Sci 50:761–774U.S. Environmental Protection Agency. 2017 TRI National Analysis, Mercury Air Releases Trend. Available online: https://19january2017snapshot.epa.gov/trinationalanalysis/mercury-air-releases-trend2015-tri-national-analysis_.htmlUNEP Chemicals Branch, 2008. The global atmospheric mercury assessment: sources, emissions and transport. UNEP-Chemicals, Geneva, 44.UNEP, 2018. The Global Mercury Assessment: UN Environment Programme Chemicals & Health Branch, Geneva, Switzerland.Urbina M., 2016. Temporal variation on environmental variables and pollution indicators in marine sediments under sea Salmon farming cages in protected and exposed zones in the Chilean inland Southern Sea. Science of The Total Environment, Volume 573, 15 December 2016, Pages 841-853. https://doi.org/10.1016/j.scitotenv.2016.08.166Vaasmaa T., Kaasika M., Loosaarb J., Kiiska M., Tkaczyka A.H., 2017a. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants. Journal of Environmental Radioactivity. Volumes 178–179, Pages 232-244 https://doi.org/10.1016/j.jenvrad.2017.08.017Vaasmaa T., Loosaar J., Gyakwa F., Kiiska M., Özdenc B., Tkaczyka A.H., 2017b. Pb-210 and Po-210 atmospheric releases via fly ash from oil shale-fired power plants. Environmental Pollution, Volume 222, Pages 210-218. https://doi.org/10.1016/j.envpol.2016.12.054Valdés, J., & Sifeddine, A., 2009.Composición elemental y contenido de metales en sedimentos marinos de la bahía Mejillones de Sur, Chile. Latin American Journal of Aquatic Research, 37(2), 131–141. http://doi.org/10.3856/vol37-issue2-fulltext-2Vargas G., L. Ortlieb, E. Chapron, J. Valdés & C. Marquardt, 2005. Paleoseismic inferences from a high-resolution marine sedimentary record in northern Chile (23° S). Tectonophysics 399: 381-398.Vargas G., L. Ortlieb, J. Pichón, J. Bertaux & M. Pujos, 2004. Sedimentary facies and high resolution primary production inferences from laminated diatomacous sediments off northern Chile (23° S). Marine Geology 211: 79-99.Yáñez, J., Guajardo, M., Miranda, C., Soto, C., Mansilla, H. D., & Flegal, A. R., 2013. New assessment of organic mercury formation in highly polluted sediments in the Lenga estuary, Chile. Marine Pollution Bulletin, 73(1), 16–23. http://doi.org/10.1016/j.marpolbul.2013.06.015Zhao S., Duan Y., Chen L., Li Y., Yao T., Liu S., Liu M., Lu J., 2017. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury. Environmental Pollution, Volume 229, Pages 863-870, https://doi.org/10.1016/j.envpol.2017.07.043.Zhonggen Li, Xufeng Chen, Wenli Liu, Taishan Li, Ji Chen, Che-Jen Lin, Guangyi Sun, Xinbin Feng, 2019. Evolution of four-decade atmospheric mercury release from a coal-fired power plant in North China, Atmospheric Environment, Volume 213, Pages 526-533, https://doi.org/10.1016/j.atmosenv.2019.06.045.